Socio-economic analysis of PBT/vPvB substances in REACH: A concern-based approach

Silke Gabbert

Environmental Economics and Natural Resources Group Wageningen University & Research

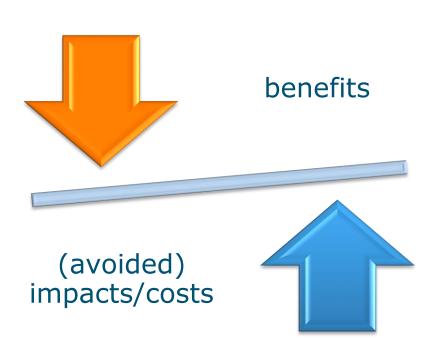
silke.gabbert@wur.nl

RIVM workshop 'Persistence, Bioaccumulation/mobility and toxicity', 21 March 2019, Bilthoven

Outline

- 1. Background: Socio-economic analysis in REACH authorisation and restriction processes
- 2. The `PBT/vPvB concern' and how it can feed into the evaluation of impacts in an SEA
- 3. An approach to concern-based cost-effectiveness analysis of PBT/vPvB substances
- 4. Illustrative case study
- 5. Conclusions and points for further discussion

1. Background


In REACH, PBT/vPvB substances are Substances of Very High Concern (SVHC)

> Two regulatory instruments: Authorisation and restriction

	Authorisation	Restriction
Key actor(s)	Companies	Member state or ECHA at the request of the Commission
Applies to	SVHC (substances included in REACH Annex XIV)	All substances on its own in mixtures or in articles
Aim	Progressive replacement of SVHC by suitable alternative substances or technologies where these are economically and technically viable	Stop manufacture or marketing of substances unless they comply with defined risk control measures
SEA	Mandatory	Not mandatory (but recommended)
Aim of SEA	 Show economic feasibility of alternatives in a substitution plan Show that the benefits of a continued use outweigh the risks/damage costs 	 Provide supportive information on different sections of a restriction proposal, e.g. assessment of impacts/costs and benefits of the proposed restriction

1. Background

Rationale of SEA: Balancing the (expected) gains against the (expected) losses

- What defines a 'benefit' and an 'impact/cost' depends on the assessment perspective
- Different impact categories (impacts on human health and environment, social impacts, wider economic impacts, distributional impacts
- In general, a societal perspective is adopted, i.e. costs and benefits comprise both private and external costs/benefits

1. Background

Impact assessment in SEA according to REACH Guidance documents:

SEA

Economic impacts:

Private and social direct costs

Environmental impacts:

Destruction of habitats or ecosystems; impairment of environmental quality, ecosystem resilience or ecosystem services provision

Health impacts: Morbidity and mortality

Social impacts:

Change of employment and workplace quality

Wider economic impacts: Impacts on market and prices

(including inflation)

Distributional impacts:

Allocation of costs and benefits between markets, sectors, in-and outse the EU

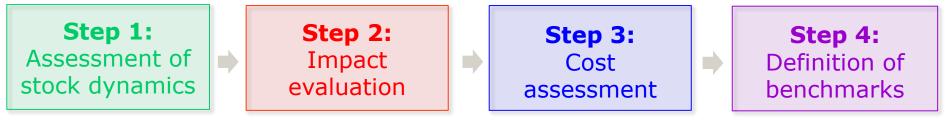
2. The PBT/vPvB concern

- Regulatory concern of PBT/vPvB substances:
 - REACH Guidance R.11: "Safe concentrations in the environment cannot be established using the methods currently available with a sufficient reliability for an acceptable risk to be determined in a quantitative way"
 - Potential to accumulate in the environment
 → cessation of emissions will not necessarily result in a reduction of environmental concentrations
 - Existing testing methods and inappropriate to predict longterm effects

> LRTP: Potential to be transported to remote areas

- 2. The PBT/vPvB concern
- Regulatory concern of PBT/vPvB substances (cont.):

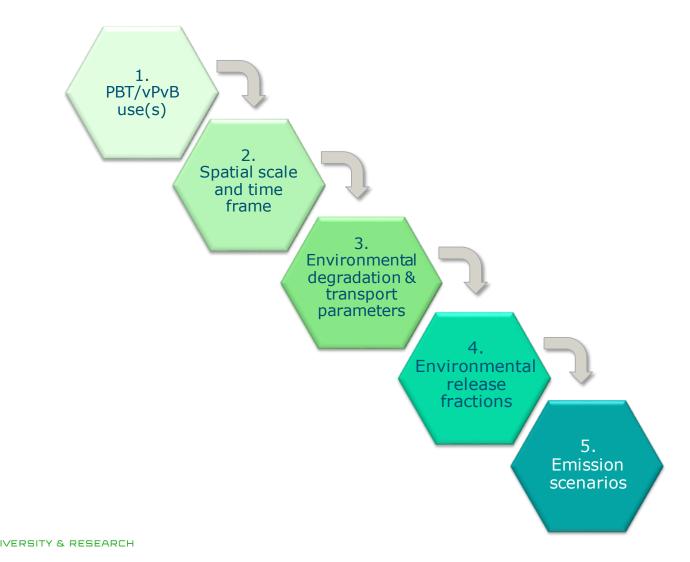
- Uncertainty and knowledge gaps about long-term effects, risks and impacts
- ➤ A quantitative assessment and valuation of human health and environmental impacts is considered not possible
 → Prioritisation of a cost-effectiveness analysis approach (SEAC/31/2016/05 Rev. 1)



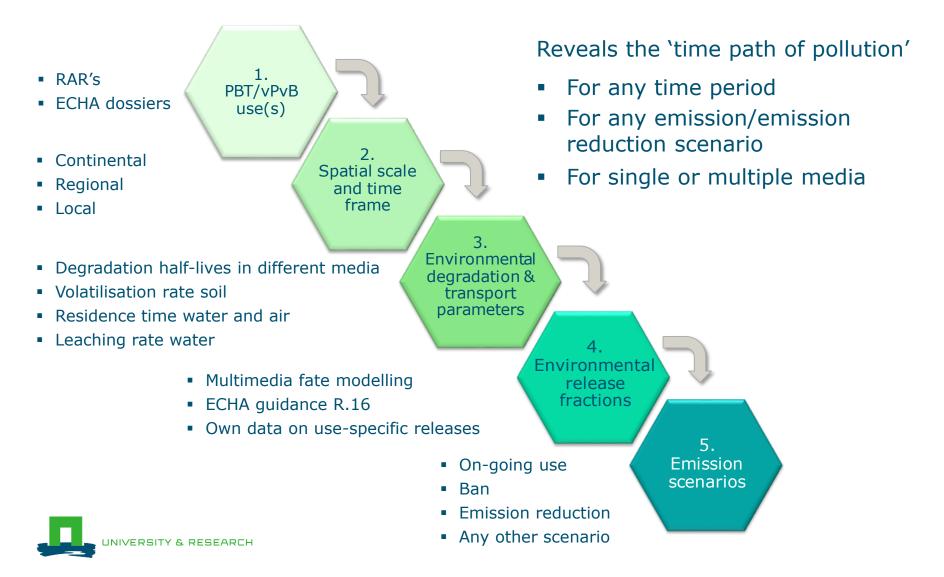
- 3. An approach to concern-based CEA
 - Persistence = accumulation of environmental concentrations over time!
 - Persistence = stock externalities!
 - \rightarrow What are the implications for SEA?
- EC project "Approach for the Evaluation of PBTs Subject to Authorisation and Restriction Procedures in the context of Socio-economic analysis"
- See reporting material at:

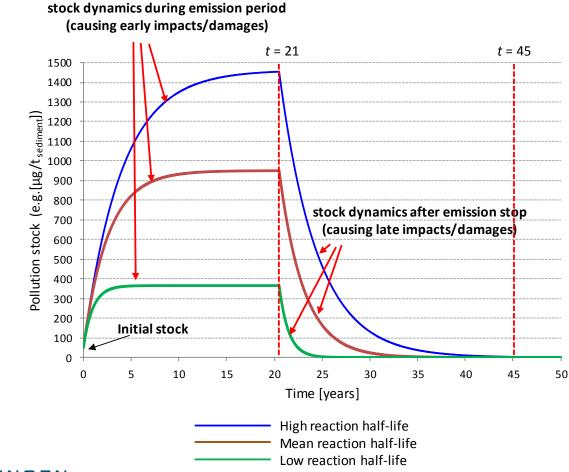
https://publications.europa.eu/en/publication-detail/-/publication/ff4fea17-704d-11e8-9483-01aa75ed71a1/language-en/format-PDF/source-71972846

Outline of CEA approach:

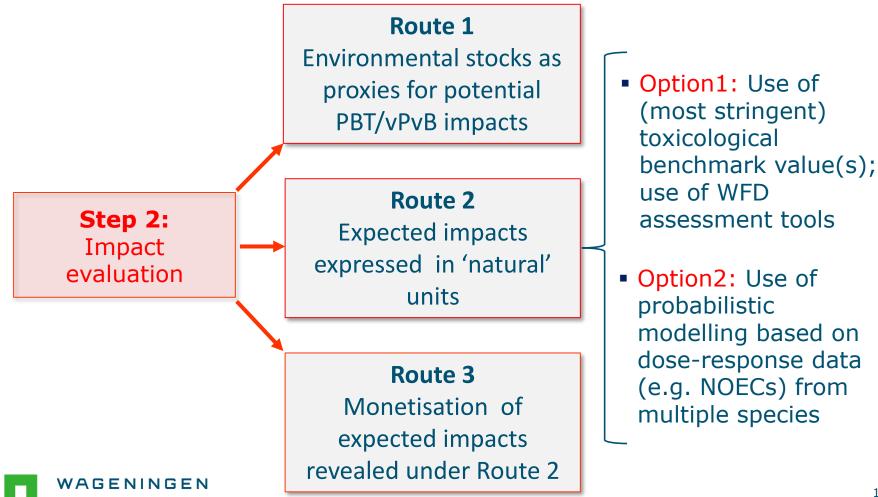


- Determine a PBT/vPvB substance's time path of pollution
- Transfer information about (expected) environmental concentrations into impact information
- Determine costs of PBT/vPvB emission reduction or abatement

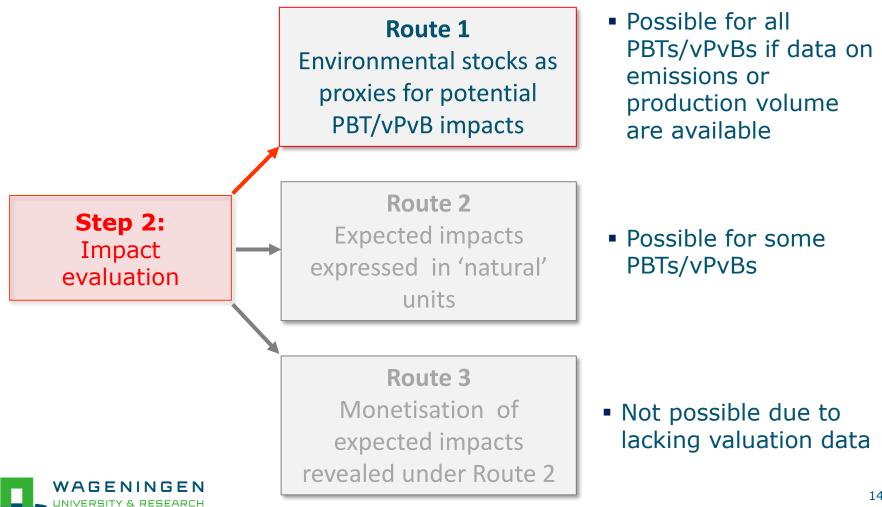

 Define benchmark values as upper proportionality bounds in an CEA


Step 1: Assessment of stock dynamics

Step 1: Assessment of stock dynamics



Illustrative example of stock dynamics assuming constant emissions



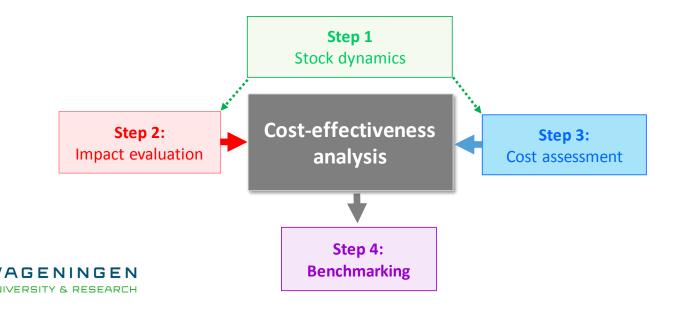
Step 2: Impact evaluation

Step 2: Impact evaluation/approximation

Step 3: Cost assessment

IVM Institute for Environmental Studies

Benchmark development for the proportionality assessment of PBT and vPvB substances


IVM 2015: https://echa.europa.eu/documents/10162/13647/R15_11_pbt_benchmark_report_en.pdf

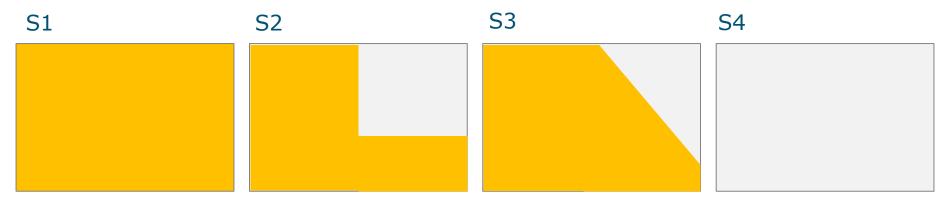
- Cost estimates are assumed to reflect policy preferences/WTP
- ➤ Costs are expressed in €/kg emission reduction
- BUT: Due to being persistent, impacts from exposure to PBT/vPvB chemicals arise from the environmental stock, NOT from emissions!
- ➤ The relevant cost unit for CEA of PBT/vPvB substances is €/kg avoided stock!

Step 4: Benchmarking

- General definition 'benchmark': Standard value of a specific parameter to which the actual/estimated value of that parameter will be compared.
- Definition 'benchmark' in REACH SEA applications:
 Value of a parameter indicating the cost-effectiveness of a (policy) measure.
- \rightarrow Is a particular cost-effectiveness ration considered acceptable?
- \rightarrow Benchmarks depend on the route to impact assessment!

Step 4: Benchmarking

- Different approaches considered:
 - Benchmarks based on clean-up costs
 - \rightarrow linked to defined environmental quality standards (EQS)
 - Benchmarks based on remediation costs
 → similar to approach adopted in IVM study
 - Benchmarks based on affordability criteria
 - → based on (additional) economic criteria such as determining 'disproportionate cost' criteria, or 'best available techniques' criteria
- Cost database for 17 PBT/vPvB substances published under <u>https://publications.europa.eu/en/publication-detail/-/publication/ff4fea17-704d-11e8-9483-01aa75ed71a1/language-en/format-PDF/source-71972846</u>

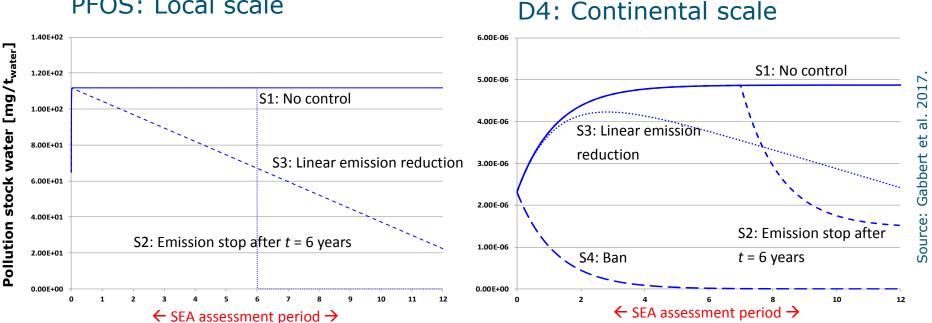

Step 1+2:Assessment of stock dynamics as an approximation of a PBT/vPvB's impact potential

Step	PFOS		D4
1. PBT/vPvB use	Paper treatment		Wash-off PCPs
2. Spatial scale and time frame	Continental: 28 y Local: 12 years	/ears	Continental: 12 years
3. Elimination rate [1/days]	Continental: Water: 5.81E-03 Sediment: 6.93E-07 Soil: 7.57E-04 Air: 1.18E-01	Local: Water: 1.00E+01 Sediment: 6.93E-07 Soil: 7.57E-04 Air: 1.00E+01	Continental: Water: 4.15E-03 Sediment: 2.20E-03 Soil: 4.73E-02 Air: 1.61E-01
4. Release fractions [%]	Continental: Water: 73.6 Sediment: 0 Soil: 21.4 Air: 5	Local: Water: 90 Sediment: 0 Soil: 10 Air: 0	Continental: Water: 25 Sediment: 0 Soil: 75 Air: 0
5. Policy scenarios:	 S1: 'No control', benchmark scenario S2: Emission stop of the considered use after t=6 years of the SEA assessment period S3: Linear reduction of emissions from the considered use at t=1 of the SEA assessment period S4: Emission stop of all uses at t=1 of the SEA assessment period (ban) 		

Source: Brooke et al. 2004, EUSES 2008, ECHA 2015, own assumptions.

Step 1+2:Assessment of stock dynamics as an approximation of a PBT/vPvB's impact potential

4 different emission scenarios (boxes represent emissions within SEA assessment period):



-'No control' or 'baseline' scenario: -On-going emissions from all uses for the entire time period -Emission stop of the considered use after *t*=6 years of the SEA assessment period -Linear reduction of emissions from the considered use starting at t=1 of the SEA emission period to 20% of the initial emission level

-Emission stop of all uses at *t*=1 of the SEA assessment period (ban)

Step 1+2:Assessment of stock dynamics as an approximation of a PBT/vPvB's impact potential

PFOS: Local scale

Time [years]

Step 3: Cost assessment

PFOS, local scenario, SEA period 12 years

	Scenario S1	Scenario S2	Scenario S3
Total environmental stock [kg]	177	104	117
Total stock reduction compared to S1 [kg]	0	73	63
NPV of total cost [€ mln]	-	1.9	1.7
Cost per unit of avoided stock [€/kg]	-	26,000	27,000

D4, continental scenario, SEA period 12 years

			1.7	1.7
Cost per unit of avoided stock [€/kg]		-	26,000	27,000
D4, continental scenario, SEA period 12 years				
	Scenario S1	Scenario S2	Scenario S3	Scenario S4
Total environmental stock [kg]	18,021	12,348	12,661	458
Total stock reduction comp. to S1 [kg]	0	5,673	5,360	17,563
NPV of total cost [€ mln]	-	10.6	13.1	30.3
Cost per unit of avoided stock [€/kg]	-	1,868	2,444	1,725

 \rightarrow Emission stop (S3) is less costly than emission reduction (S2)!

Step 4: Benchmarking based on available EQS (cleanup/remediation cost approach) and prevention cost estimates

Benchmark costs related to the avoided stock

Substance	Based on clean-up costs [€/kg removed]	Based on prevention costs [€/kg avoided]
D4 (prevention)	8 - 1,303	544 - 4,657
PFOS (clean-up)	274 - 34,000	0 - 441,629

Source: Gabbert et al. 2017.

5. Conclusions and points for further discussion

- SEA in REACH authorisation and restriction procedures provides underpinning to an evaluation of PBT/vPvB impacts
- Due to their persistence, PBT/vPvB chemicals are stock pollutants. That is, impacts to the environment and to human health arise from the stock in the environment, NOT from emissions
- We suggest an approach to account for the (long-term) impact potential of PBTs/vPvBs in SEA, and show how the different 'ingredients' of the CEA framework (effectiveness estimates, cost estimates, benchmarks) can be derived.
- The approach allows
 - -for a concern-based evaluation of PBTs/vPvBs in SEA,
 - -for a coherent comparison of policy options for a particular PBT/vPvB -for a more meaningful comparison of options across PBTs/vPvBs

5. Conclusions and points for further discussion

Points for discussion:

- Should SEA apply to PBT/vPvB substances?
- Persistence is one component of the PBT concern, but there are also others (e.g. LRTP). Should they be included in an SEA?
- Is the current approach to assessing costs in REACH authorisation and restriction processes (compliance costs) sufficient?
- Are benchmarks based on (previous) cost estimates meaningful for (regulatory) decision-making?

Thank you for your attention!

Further information:

Gabbert, S., Hilber, I. (2016): "Time matters: A stock pollution approach to authorisation decision-making for PBT/vPvB chemicals under REACH." <u>https://www.sciencedirect.com/science/article/pii/S030147971630576X</u>

Gabbert, S. et al. (2017): "Approach for Evaluation of PBTs Subject to Authorisation and Restriction Procedures in context of Socio-economic analysis", <u>https://publications.europa.eu/en/publication-detail/-/publication/ff4fea17-704d-11e8-9483-</u> <u>01aa75ed71a1/language-en/format-PDF/source-71972846</u>

Oosterhuis, F., Gabbert, S. (2019): "Towards a concern-based regulation of PBT/vPvB substances: A cost-effectiveness analysis approach to REACH authorization and restriction procedures." In progress.

