

Guidance for the derivation of environmental risk limits

Introduction and definitions

version 2.0

Colophon

© RIVM 2025

Parts of this publication may be reproduced, provided acknowledgement is given to: National Institute for Public Health and the Environment, along with the title and year of publication.

Contact:

Helpdesk Risico's van Stoffen

This investigation has been performed by order and for the account of Ministry of Infrastructure and the Environment, within the framework of the project 'Nationaal stoffenbeleid ZZS'.

This is a publication of:

National Institute for Public Health
and the Environment
P.O. Box 1 | 3720 BA Bilthoven
The Netherlands
www.rivm.nl/en

Version history

VERSION	DATE	CHANGE
1.0	2015	
2.0	2025	version history added complete editorial update

Contents

1	Introduction and scope of the document 5				
2	A short history of environmental quality standards in the Netherlands 6				
2.1 2.2 2.3 2.4 2.5 2.6 2.6.1 2.6.2	Introduction 6 Maximum Permissible and Negligible Concentration 6 Serious Risk Concentration 8 Harmonisation and integration of exposure routes 8 International developments: consequences for methodology 9 Developments since 2007 10 European substances frameworks 10 National developments 11				
3.1 3.2 3.3 3.4	Terminology and exposure routes Risk limits or quality standards Nomenclature 13 Terminology for surface water Risk limits, receptors and exposure routes per compartment 15				
4 4.1 4.2 4.3 4.4 4.5 4.6	Generic aspects 16 Assessment factor approach 16 Statistical extrapolation 16 Semi-field or field data 17 Data for species and processes 17 Risk levels for genotoxic carcinogens 18 Derivation of the Serious Risk Concentration (SRC) 18				
5	Procedural aspects 20				
References 21					

List of abbreviations 25

1 Introduction and scope of the document

This online guidance is used for the derivation of environmental risk limits (ERLs) in the Netherlands. Until some 20 years ago, these were derived for all environmental compartments simultaneously, considering soil, (ground)water, sediment and air together. The methodology for ERL derivation was published in one document combining the then existing European methodology with national guidance for those aspects that were not addressed in European guidance [1].

At present the derivation of risk limits is often driven by compartment-specific needs. Extensive guidance for the derivation of surface water quality standards has become available at a European level, making national guidance partly obsolete and causing consistency problems to some extent, e.g. with respect to terminology. It was therefore decided in 2015 to publish the ERL-guidance in the form of separate online documents. The following parts are available.

- Introduction this document)
- Data collection, evaluation and selection
- Surface water RIVM uses the European technical guidance for derivation of water quality standards under the Water Framework Directive
- Sediment
- Soil and groundwater
- Air
- Equilibrium partitioning methods for conversion of risk limits between compartments
- Taxonomics guidance on grouping of test organisms in taxa
- Variables and defaults

The present document serves as a general introduction to the other guidance parts. It provides general information on the historical background and formal process of standard setting in the Netherlands and discusses some aspects that are relevant for all other parts of the guidance, i.e., general methodological concepts that are applicable irrespective of the environmental compartment.

This guidance presents the current state of the art with respect to environmental risk limit derivation and environmental standard setting in the Netherlands. The documents are meant to be living documents that will be revised when needed in view of technical or procedural changes. Revisions that go beyond editorial changes are subject to scientific review and should be agreed upon by the responsible Ministry of Infrastructure and Water management.

2 A short history of environmental quality standards in the Netherlands

2.1 Introduction

The Netherlands have a relatively long history of environmental quality standards. The first official water quality standards date back to the late 60's of the past century [2]. Over the years, scientific developments and policy needs have influenced methodology. At the same time, the regulatory context for risk assessment of substances shifted from a national to a European level. For a proper understanding of the standards that are addressed in this guidance, this introduction provides a short history of the development of standard setting in the Netherlands.

2.2 Maximum Permissible and Negligible Concentration

In 1985, a risk based approach was adopted as the main principle of environmental protection in a policy document that was presented to the parliament [3]. In this policy document, two risk levels were introduced: the maximum permissible concentration (MPC), indicated in Dutch as 'maximaal toelaatbaar risiconiveau' (MTR) and the Negligible Concentration (NC), indicated as 'verwaarloosbaar risiconiveau' (VR). Below the NC, negligible risks are considered to be present and no action is needed. Above the MPC, intolerable risks are expected and action is prescribed. Between NC and MPC, there is room for improvement, and policy should be aimed at ultimately reaching the NC (see Figure 1).

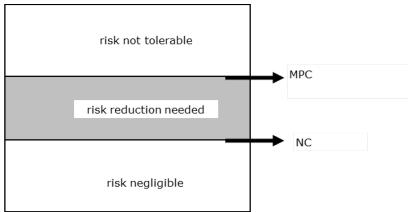


Figure 1 Risk based concept of environmental policy in the Netherlands. MPC = maximum permissible concentration, NC = negligible concentration.

In the appendix to the 1985-policy document, the risk levels were defined with respect to human health. For compounds for which a threshold level for adverse effects can be determined, the MPC for humans was set at the Acceptable Daily Intake (ADI) or Tolerable Daily Intake (TDI). For substances without a threshold (genotoxic carcinogens), the MPC was set to an increased probability of death of 10^{-6} per year (10^{-4} on a life-time basis). The NC was defined as 1% of

the MPC, taking account of the fact that, while setting standards for single compounds, simultaneous exposure to multiple substances occurs in reality [3,4]. In a follow-up, the MPC for the environment was added and defined as the concentration which protects at least 95% of the species in an ecosystem, thereby protecting the function of the ecosystem [5]. Similarly to the human risk assessment, the NC for the ecosystem was set to 1% of the MPC.

The 95% protection level is associated with the use of Species Sensitivity Distributions (SSDs). The SSD-method is used to predict the sensitivity of a whole community on the basis of the results of laboratory data on individual species and enables to estimate the fraction of species in the community that is potentially affected given a certain exposure level. The method was developed by Van Straalen and Denneman [6] and modified later on (e.g., [7,8]). The initially proposed 5% cut-off level as the basis for standard setting was generally adopted. In the various guidance documents for Dutch standard setting that were published later on, the SSD-method was advised when at least four ecotoxicity data were available for species and/or functional parameters such as microbial or enzyme activity [9-13]. If fewer data were available, assessment factors were applied to the lowest ecotoxicity endpoint, assuming that this would at least guarantee a similar level of protection.

The definitions for MPC and NC have been maintained in the Dutch policy on substances over the years, although sometimes phrased in a slightly different way. In 1997 and 1999 [14,15], the definitions of MPC and NC were presented as follows:

'The MPC is defined in the policy on substances as the scientifically based standard for a substance that indicates at which concentration in an environmental compartment:

- 1. no effect to be rated as negative is to be expected for ecosystems;
- 2a no effect to be rated as negative is to be expected for humans (for non-carcinogenic substances);
- 2b for humans no more than a probability of 10⁻⁶ per year of death can be calculated (for carcinogenic substances).

The MPC is derived per substance. With the MPC for ecosystems it is envisaged to protect the species within an ecosystem. It is assumed that the ecosystem will be protected.'

'The NC is the lower limit for a substance and in principle derived as 1/100 of the MPC. The factor of 100 between MPC and NC is chosen because many substances are encountered simultaneously in the environment. It is particularly meant to account for the possible effects of combination toxicity. Although it seems desirable to differentiate the fixed factor of 100 (e.g. to substance group and/or environmental situation), it is decided based on advises of the Health Council¹ and Soil

¹ Gezondheidsraad, http://www.gezondheidsraad.nl/

Protection Technical Committee² to maintain the factor of 100 between MPC and NC.'

The MPC had been kept as risk level to date, but the NC was abandoned as a generic policy objective in the course of time.

2.3 Serious Risk Concentration

Apart from the MPC and NC, the Dutch policy on substances has been using the Serious Risk Concentration (SRC) as an additional risk limit. to date, the SRC is primarily used in soil policy, where it is used as input for the derivation of the so-called intervention values. Intervention values are concentrations in soil, sediment or groundwater above which measures should be taken. The intervention values are based on a combination of human toxicological and ecotoxicological risk limits. For humans, the intervention value uses the MPC-level according to the definition given above, while for ecosystems the SRC is used. The SRC for ecosystems is defined as the concentration at which 50% of the species is potentially affected.

2.4 Harmonisation and integration of exposure routes

From the early start of method development [13], harmonisation of quality standards among environmental compartments has been a key issue in Dutch environmental policy. Soil, (ground)water, sediment and air are interconnected and after primary emission to soil, water or air, compounds will be distributed to the other compartments depending on the characteristics of the substances and the environment. Harmonisation in this context means that environmental quality standards for one compartment should offer adequate protection for organisms in another compartment after distribution of the substance. From this perspective, quality standards for soil were derived on the basis of experimental data, and compared with soil standards that were calculated from aquatic ecotoxicity data using information on sorption by means of equilibrium partitioning, and the lowest value was usually taken forward. Similarly, for volatile substances, risk limits for water, sediment and soil were harmonised with risk limits for air based on human inhalation toxicity [12].

Harmonisation between compartments was seen as a primary aim of standard setting, as can be seen from the name that was given to the process of formalisation of environmental quality standards: 'Integrated Standard Setting for Substances', indicated in Dutch as *Integrale Normstelling Stoffen* (INS). Under the flag of INS, environmental quality standards have been derived and published for several hundreds of substances (see e.g., [14,15]). In practice, the concept of harmonisation has been primarily applied to convert standards between water and soil (*vice versa*) by means of equilibrium partiotioning, and to derive quality standards in case experimental data for soil and sediment were absent. To date, the latter use of equilibrium partitioning is still applied, but the harmonisation of standards was abandoned in 2004 when the decision was made to follow the European developments [16].

² Technische Commissie Bodem, http://www.tcbodem.nl/

Another aspect of integrating standards has been the inclusion of secondary poisoning in the final standard for soil or water. In 1994, RIVM published proposals for quality standards for water and soil that included the potential risks for birds and mammals due to consumption of water and/or soil organisms [17], based on the work of Romijn et al. [18,19]. Using this method, critical toxicity data for birds and mammals were back-calculated to safe concentrations in prey based on assumptions on daily food intake. The concentrations in prey were in turn recalculated into corresponding MPCs in water and/or soil using information on bioconcentration and bioaccumulation. One of the discussion points was whether or not these back-calculated MPC-values should be added to the dataset for direct ecotoxicity, leading to one MPC that covered both aspects, or that both types of MPC should be kept separated and the lowest one chosen as the final value. Where originally the datasets were kept separated [17], the approach of a combined dataset was chosen later on [10,12,20].

2.5 International developments: consequences for methodology

In 2003, a revision was published of the Technical Guidance Document (TGD) in support of the European evaluation of new³ and existing substances⁴ and biocides⁵ [21-23]. Partly parallel to the revision of the TGD, initial methods were published in 2002 and 2005 for deriving water quality standards in the context of the European Water Framework Directive (WFD⁶) [24,25]. Where on the one hand harmonisation among member states was achieved by issuing European guidance documents, the development of framework specific guidance led to a compartment specific approach in which the Dutch principle of harmonisation of standards between water, sediment and soil was no longer appropriate from a policy point of view. In 2004, the responsible Ministries decided that internationally derived standards such as the Predicted No Effect Concentrations (PNECs) for new and existing substances, or water quality standards as derived under the WFD, would be the starting point for national quality standards. In case such standards were not available, the European methodology should be followed. It was explicitly stated that harmonisation between compartments was no longer performed, although this would be promoted among member states [16].

As a consequence, the process of standard setting was renamed to '(Inter)national Standard Setting for Substances' [16], but the terminology of MPC and NC was maintained. The definitions of MPC and NC were adapted from the 1989-version, i.e., the 95% protection level for species in ecosystems was again explicitly mentioned. Although the methodology of the TGD and WFD was in line with the approaches of the Netherlands to a large extent, adopting this guidance resulted in some major changes:

³ Commission Directive 93/67/EEC on Risk Assessment for new notified substances

⁴ Commission Regulation (EC) No 1488/94 on Risk Assessment for existing substances

 $^{^{5}}$ Directive 98/9/EC of the European Parliament and of the Council concerning the placing of biocidal products on the market

⁶ Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for Community action in the field of water policy

- equilibrium partitioning was only applied as a surrogate when no
 or not enough experimental ecotoxicity data were available to
 derive standards instead of using it as a default approach for
 harmonisation between water, sediment and/or soil,
- SSDs were only used in case of rather extensive datasets of at least 10 endpoints for at least eight different taxonomic groups, instead of the usual four values,
- secondary poisoning was assessed separately from direct ecotoxicity instead of integrated into one dataset,
- indirect exposure of humans was introduced as a third exposure route, next to direct ecotoxicity and secondary poisoning,
- in some cases, ecotoxicity data on microbial or enzymatic processes (functional endpoints) and data relating to effects on species or populations (structural endpoints) were combined into one dataset, instead of deriving separate risk limits for processes and species, respectively.

As a result of the decision to use the TGD and to implement the WFD-guidance, an updated guidance document for the derivation of environmental risk limits was published in 2007 [1]. Although the concept of quantitative harmonisation between compartments was abandoned, the methodology for the respective compartments was harmonised as much as possible. An example of this was the choice to adopt the cancer risk level of 10⁻⁶ on a life-time basis as proposed under the WFD also for the derivation of MPC-values for soil and air (see section 4.5 for further information on this topic). In this way, the 2007-guidance combined the European methodology with national guidance for those aspects that were not addressed in the international guidance documents.

2.6 Developments since 2007

2.6.1 European substances frameworks

With the implementation of REACH, the European legislation for new and existing substances became obsolete and the TGD was replaced in 2008 by REACH guidance documents, with several updates since then. A similar process has led to separate technical guidance documents for biocides [26]. In addition, a new European technical guidance document for the derivation of water quality standards under the WFD was published in 2011 and updated again in 2018 [27,28]. Also in other frameworks, relevant guidance documents for the risk assessment of were updated [29,30].

Although largely building on previous guidance, these updated guidance documents also included new scientific developments. One prominent example is the viewpoint that water quality standards derived on the basis of laboratory ecotoxicity tests represent dissolved concentrations instead of total concentrations, another is the inclusion of more sophisticated methods to address bioavailability in the context of standard setting.

More importantly, the above illustrates the ongoing tendency that guidance development is primarily taking place within the respective European regulatory frameworks. These frameworks deal with specific

compartments (e.g., WFD and European air quality directive) or consider all compartments within the context of a particular use (e.g., industrial chemicals, biocides and plant protection products). Frameworks differ with respect to their policy aims, definition of protection goals, conceptual approaches, dossier requirements and/or timeframes for implementing scientific developments. Although harmonisation between frameworks is certainly an issue in Europe, the current situation is that substance and compartment specific guidance differs between regulatory frameworks.

As a consequence of the above described developments in Europe, an update of the 2007-guidance was needed, which in 2015 resulted in the first version of the current series of documents. The 2015-update reflected the technical changes in methodology, but also followed the European tendency towards a compartment and framework specific approach, still seeking for harmonisation between methodologies as much as possible. The Dutch national derivation of risk limits for water is now fully compatible with the European methodology under the WFD, which has led for example to a more stringent risk level for genotoxic carcinogens (see also section 4.5). As a result, the terminology used for water follows European guidance and differs from that for other compartments (see further 3.2). Adopting the WFD-methodology also meant that derivation of the NC became obsolete.

2.6.2 National developments

While a harmonised European policy exists for water and to some extent for air, the environmental policy regarding soils and sediments is fully member state specific. Formerly used national risk limits, such as the SRC, are no longer used for water, but derivation may still be necessary to derive equivalent risk limits for groundwater or for soil using equilibrium partitioning. A full overview of relevant risk limits per compartment is given in section 3.4.

2.6.2.1 National policy on substances of high concern
Article 57 of the European REACH regulation on the registration,
evaluation, authorisation and restriction of chemicals, sets criteria for
the identification of Substances of Very High Concern (SVHC). In 2011,
a national policy program was started to reduce emissions of substances
meeting those criteria, which in Dutch are called 'Zeer Zorgwekkende
Stoffen' (ZZS). The national Environmental Management Activities
Decree requires industry to strive for avoiding emissions by substitution
or technical measures, and if this is not yet feasible, to minimise
emissions. Industry is obliged to inform authorities on their progress in
emission reduction and continuously improve towards zero-emission.
The NC, the derivation of which already became obsolete for surface
water, soil and sediment, was no longer used for air.

2.6.2.2 Environment and Planning Act 2024

In 2024, hundreds of individual pieces of Dutch legislation were brought together into one over-arching regulatory framework aiming at an integrated approach towards the management and use of the environment. The implementation of this Environment and Planning Act ('Omgevingswet' in Dutch) has led to a new vocabulary for environmental quality standards, but the underlying technical derivation methods have been maintained.

3 Terminology and exposure routes

3.1 Risk limits or quality standards

In the Netherlands, there has always been a clear distinction between scientifically based advisory values, indicated as environmental *risk limits*, and the final regulatory values, indicated as environmental *quality standards*. According to the procedures laid down in 2004, standards are set by the responsible Ministries primarily on the basis of a scientific advice, but other (socio-economic) aspects may be taken into account as well. It may happen that the final standard deviates from the scientifically based risk limit. Therefore, the national guidance documents and reports based thereon refer as much as possible to the derivation of risk limits, the word *standard* is preferably not used to avoid the suggestion that this policy step has already been taken. However, for surface water special considerations are made, see below.

3.2 Nomenclature

The following abbreviations are used for the respective ERLs:

MPC = Maximum Permissible Concentration (see 2.2)

SRC = Serious Risk Concentration (see 2.3)

EQS = Environmental Quality Standard, terminology used under

the WFD (see 3.3)

AA-EQS = Annual Average EQS (see 3.3)

MAC-EQS = Maximum Acceptable Concentration EQS (see 3.3)

OS = Intermediate Quality Standard from which the final generic

standard for surface water is selected

Each type of risk limit is indicated by the main abbreviation given above, followed by a subscript that indicates the compartment and exposure route considered. The abbreviations used are listed below:

air = air

biota = fish eaten by humans / predators dw = intended for drinking water abstraction

eco = direct ecotoxicity for organisms

fw = fresh water grw = groundwater hh = human health

hh food = indirect exposure of humans via food

secpois = secondary poisoning of predatory birds / mammals

sediment = sediment soil = soil sw = saltwater

water = fresh and saltwater

For example, the MPC for air based on human exposure is indicated as MPC_{air, hh}, the MPC for groundwater based on ecotoxicity is indicated as MPC_{grw, eco}, the Quality Standard for surface water intended for drinking

water abstraction is indicated as $QS_{dw, hh}$. For further information, the reader is referred to the respective chapters of the quidance.

3.3 Terminology for surface water

As indicated in the previous chapter, the MPC (MTR in Dutch) has since long been used in environmental quality policy. With the implementation of the WFD, new quality standards were introduced.

- a long-term standard, indicated as the annual average environmental quality standard (AA-EQS) and normally based on chronic toxicity data, and
- a short-term standard, referred to as a maximum acceptable concentration EQS (MAC-EQS) which is based on acute toxicity data.
- a chronic standard set as a concentration in biota for the protection of humans and predators (EQS_{biota}). This may be used in addition to the water-based AA-EQS, or used as a sole EQS in case conversion to water is not possible or monitoring in water is not feasible.

In addition, separate standards may be derived for the protection of surface water intended for drinking water abstraction (QS_{dw, hh}), which apply to designated locations.

In 2007, the methodology of the WFD was adopted for surface water standard setting in the Netherlands. Since the methodology differs from the former national MPC-derivation and compliance check was also changed, it was decided to adopt the WFD-terminology as used in the European priority substances directive and guidance.

It should be noted that for national implementation under the National Environment and Planning Act of 2024 different terms are used due to legal considerations. For the ease of reading, we use the abbreviations of the European guidance here. Still, the values that are derived according to the WFD-guidance should be interpreted as being risk limits, in a sense that they are scientific advisory values that will be used as a basis for standard setting. A similar situation exists for the European process of EQS-derivation for priority (hazardous) subtances under the WFD. These values, although indicated as EQS in the dossiers, do not have a legal status until formally approved. For sediment, the term MPC is maintained. The status of the results should be made clear when publishing reports in which risk limits are derived.

The WFD-guidance also describes methods for the derivation of a QS_{sediment} [28]. These standards are not set at a European level, and are not implemented in Dutch national legislation under the WFD. Risk limits for sediment may be needed in other legal frameworks for local risk assessment, remediation policy or evaluation of re-use of dredged materials.

3.4 Risk limits, receptors and exposure routes per compartment

The aim of environmental policy is that humans and ecosystems are protected against adverse effects (see section 2). Environmental quality standards therefore consider direct and indirect exposure of both humans (where relevant) and organisms in an ecosystem. This, however, does not apply to the MAC-EQS, which refer to direct ecotoxicity only. Table 1 summarises the risk limits and exposure routes that are considered for each compartment.

Table 1 Types of risk limits and receptors considered for the respective compartments. Compartments/routes indicated with * are subject to trigger values: derivation of risk limits depends on the characteristics of the compound.

the compound.			
Compartment	Name of risk limit	Receptors	
Water	AA-EQS	– water organisms– humans via fish consumption*– predatory birds / mammals via fish*	
	MAC-EQS SRC	– water organisms	
	QS _{dw} , hh	– humans via drinking water	
Sediment	MPC SRC	– sediment organisms	
Air	MPC	– humans via inhalation	
Soil/ groundwater	SRC	soil organismsindirect exposure of humans	
		indirect exposure of predatory birds / mammals may be considered*	
		For some purposes, an MPC for soil or groundwater may be needed	

For the AA-EQS, ecotoxicity to water organisms is evaluated and fish consumption by humans and predatory birds and mammals is taken into account, depending on characteristics of the compound. When deriving the MPC for groundwater, effects on groundwater organisms are taken into account, but also the use for drinking water abstraction.

For soil and groundwater, human health aspects are integrated at the level of the Intervention Values (see 2.3), and exposure of predatory birds and mammals that feed on earthworms may be included where relevant. For sediment, direct contact of humans with sediment is not considered critical for risk limit derivation. For air, the opposite is true: although in some cases plants have been shown to be sensitive towards volatile compounds, in the majority of cases information on ecosystem effects will be lacking and the risk limits for air will be based mainly on human inhalation toxicity.

4 Generic aspects

4.1 Assessment factor approach

According to the principles of the REACH and WFD-guidance, risk limits are initially derived on the basis of standard laboratory tests, by applying an assessment factor (AF) to the lowest credible endpoint. The AF is applied to account for the uncertainty relating to the translation of laboratory data to the field situation, e.g., the variation within and between laboratories, the variation within and between species, and the translation of acute endpoints to long-term exposure. This method is indicated as the deterministic or AF-approach. Different AF-schemes are applied for the respective risk limits (e.g., MPC, EQS, SRC_{eco}), accounting for the different time frame and protection level aimed at.

The AF depends on the number and type of data available, lower assessment factors may be used when more data on additional taxonomic groups and/or long-term studies are available. For example, for derivation of a chronic risk limit, an AF of 1000 is applied to a single acute endpoint, while the AF may be reduced to 10 when long-term toxicity data are available from three species across three trophic levels. Useful lines of evidence that may be used to inform the extrapolation (and possibly influence the size of AF applied) include mode of action data, effects data from the field, and background concentration data for naturally occurring substances [28]. Moreover, data on the toxicity to other organisms than the standard species, representing as such different trophic levels, taxonomic groups, traits or feeding strategies broaden the knowledge on the substance to be assessed and may justify reduction of the AF. If enough data are available, statistical methods can be applied.

4.2 Statistical extrapolation

As indicated in section 2.2, Species Sensitivity Distributions (SSD) have since long been used for standard setting in the Netherlands. For this statistical method, the reliable toxicity data per species are ranked and a model is fitted. From this, the concentration that protects a certain proportion of species (typically 95%) can be estimated (the HC5). For the construction of SSDs, the computer program ETX 2.3.1 [31] can be applied, but other programs may be used as well. Following international agreements, the data requirements for applying the SSD-method to aquatic data have been extended to at least 10 endpoints for individual species from at least eight different taxonomic groups. Although not explicitly stated in the TGD and REACH guidance, this requirement is also considered for soil. As a consequence, the application of SSDs for standard setting is limited to relatively data-rich substances. When the criteria are met and an SSD can be constructed, the HC5 based on chronic NOEC or L(E)C10-values is used for derivation of the MPC and/or AA-EQS. The HC5 based on acute studies may be used for derivation of the MAC-EQS. For derivation of the SRC for soil or water, the HC50-level is used.

In case of substances with a specific mode of action (e.g., plant protection products), constructing an SSD for the specifically sensitive species group may be considered when enough data are available. SSD-models explicitly account for differences in sensitivity between species, but a further AF is applied to the HC5 arising from model extrapolation to account for 'residual' uncertainties that are not accounted for by the SSD model. If the conditions to use the SSD-method for the derivation of quality standards are met, it should always be used. However, risk limits should also be derived using the AF method, and, where valid data exist, also using model ecosystems.

4.3 Semi-field or field data

In some cases, information from semi-field experiments or field monitoring data may be present. The majority of semi-field experiments involves aquatic micro- or mesocosm studies into the effects of pesticides on freshwater communities, although some examples are present of other substance groups and/or ecosystem types (e.g. metals, saltwater applications). Extensive guidance is available for designing and performing aquatic semi-field experiments, and for evaluation and interpretation of results [30,32-35]. The endpoints from a valid and relevant micro- or mesocosm study may be used with an AF to derive a water quality standard, or to underpin the AF used in the deterministic-or SSD-approach. For the terrestrial compartment, the use of model ecosystems has been promoted (see e.g., [36]), but application and use in standard setting is limited to date. Field monitoring data are generally not used directly for standard setting, but may be used in some cases for justification of the AF.

4.4 Data for species and processes

As indicated in section 2.5, the treatment of structural and functional endpoints was changed to some extent with the introduction of the former TGD [21-23]. Previously, both types of data had been kept separated, resulting in two risk limits of which the lowest was taken forward as final value. In the TGD and subsequent REACH guidance, microbial tests (e.g., nitrification or respiration), or enzymatic processes (e.g., urease activity) are considered to represent an additional trophic level next to plants, arthropods, and earthworms when using the AFapproach. It can be argued, however, that data on species and processes cannot be combined into one SSD because they are not a random sample from the same normal distribution of species. Separate SSDs are thus constructed for species and processes, provided that the requirements with respect to the number of data points are met. An exception is when a functional endpoint is derived for isolated strains of bacteria or fungi, e.g., when respiration of *Pseudomonas putida* is measured. In that case, the test result can be treated as a single species endpoint and added to the dataset for species.

Generally the lowest value for either species or process will be selected as the final risk limit. However, this choice should be made on a case-by-case basis, especially when different methods are applied. When enough data are available to apply statistical extrapolation for species, but not for processes, there is a chance that a single low value for processes overrules a large quantity of data on species. This may be

a reason not to choose the lowest value (see e.g., risk limit derivation for fluoranthene in [37]).

4.5 Risk levels for genotoxic carcinogens

The MPC for genotoxic carcinogens has been set to the concentration in the environment at which an increased probability of death of 10^{-6} per year exists. This is equivalent to 10^{-4} on a life-time basis. The NC was defined as 1% of the MPC, being 10^{-8} per year or 10^{-6} on a life-time basis [3-5,14-16]. These risk limits are derived by means of the so-called quantitative cancer risk assessment-method (QCRA), also indicated as non-threshold extrapolation. For this, the occurrence of tumors in experimental animals (and sometimes in humans) are expressed as a percentage and extrapolated to the above mentioned probability level. Basic assumption of the non-threshold extrapolation is that any increase of the dose, increases the chance to develop cancer.

The choice of the acceptable level (10^{-6} , 10^{-5} , 10^{-4}) is a policy decision and differs between frameworks and countries. The use of QCRA is subject of scientific debate. Under REACH, genotoxic carcinogens may be evaluated using the non-threshold approach, but a threshold approach using a Tolerable Daily Intake (TDI) is also allowed provided that sufficiently high safety factors are applied. When a non-threshold approach is used, it is recommended to use a life-time risk level of 10^{-6} for the general public [38]. The same risk level is used for derivation of the QS for human exposure via fish under the WFD [28]. This means that the acceptable level for humans under the WFD is more stringent than the level of the MPC in the Netherlands and is in fact similar to the level of the former NC. For soil and air, the protection level of 10^{-4} on a life-time basis has been maintained to date.

4.6 Derivation of the Serious Risk Concentration (SRC)

As indicated in section 2.3 and Table 1, the SRC in this guidance only refers to effects on ecosystems. For this, direct effects on organisms and indirect effects on predatory birds and mammals are taken into account. For derivation of the SRC_{eco} both acute and chronic toxicity data should be tabulated. In general, the SRC_{eco} is the geometric mean of all available chronic toxicity data. This can be calculated by hand, but when the SRC_{eco} is to be reported with confidence limits, the computer program ETX 3.2.1 [31] is used to calculate the median HC50 and its 90% confidence interval. The HC50 is equal to the geometric mean of log-normally distributed toxicity data. When no or few chronic data are available, a comparison is made with the geometric mean of acute toxicity data. In principle, an acute-to-chronic ratio (ACR) of 10 is applied to the acute toxicity data to compare acute L(E)C50s with chronic NOECs (or EC10s). If enough information on the ACR for the specific compound or endpoint is available, deviation of this factor of 10 may be possible on a case-by-case basis, but should be fully justified [39].

The SRC $_{eco}$ is always taken as the geometric mean of (either acute or chronic) toxicity data, irrespective of whether these data are lognormally distributed or not. If the data from which the SRC $_{eco}$ is calculated do not fit a log-normal distribution, it suffices to note this

briefly in the report section where the SRC_{eco} derivation is presented. The factors and conditions used for deriving SRC_{eco} are shown in more detail in the guidance for the respective compartments. For compounds that accumulate in the food chain, the SRC may also calculated on the basis of secondary poisoning.

5 Procedural aspects

The formal procedure for standard setting in the Netherlands has been updated regularly to reflect the latest developments regarding organisational and policy aspects. In short, the procedure has the following steps:

- 1. Start of the procedure: the Ministry of Infrastructure and Water Management (I&W) commissions RIVM to derive risk limits, or a private party asks for a proposal to be considered
- 2. Derivation of risk limits according to the guidance document(s)
- 3. Review of the proposal by the *Scientific Advisory Group on* standard setting for water and air: scientific peer review by experts from academia, research institutes and stakeholders regarding underlying data and methodology
- 4. Finalizing and publication of the scientific report taking account of the conclusions of the peer review
- 5. Policy advice by the *Working Group on standard setting for water* and air of I&W: consideration of e.g., socio-economic aspects and (inter)national developments
- 6. Formal approval of the standards by the *Steering Committee on standard setting for water and air*.
- 7. Publication of the standards at the website 'Risico's van stoffen', which is the official website for information on standards for substances in the Netherlands⁷

The full procedure (in Dutch) is published on the website Risico's van Stoffen <u>Procedure vaststelling normen | Risico's van stoffen</u>. Note that this procedure refers to water, drinking water and air only, separate policy processes exist for other compartments.

⁷ http://www.rivm.nl/rvs/

References

- Van Vlaardingen PLA, Verbruggen EMJ. 2007. Guidance for the derivation of environmental risk limits within the framework of 'International and national environmental quality standards for substances in the Netherlands' (INS). Bilthoven, the Netherlands. National Institute for Public Health and the Environment. Report 601782001.
- 2. Rijkswaterstaat. 1968. De waterhuishouding van Nederland. Den Haag, Nederland. Staatsuitgeverij.
- 3. TK. 1985. Indicatief Meerjarenprogramma Milieubeheer 1986-1990. Tweede Kamer der Staten-Generaal, vergaderjaar 1985-1986. 19 204, 1-2.
- 4. Pieters MN, Könemann WH. 1997. Mengseltoxiciteit: een algemeen overzicht en evaluatie van de veiligheidsfactor van 100 toegepast in het stoffenbeleid. Bilthoven, Nederland. RIVM.
- 5. TK. 1989. Nationaal Milieubeleidsplan (NMP). Notitie "Omgaan met risico's". Tweede Kamer der Staten-Generaal, vergaderjaar 1988-1989, 21 137, nr. 5.
- 6. Van Straalen NM, Denneman CAJ. 1989. Ecotoxicological evaluation of soil quality criteria. Ecotoxicol. Environ. Saf. 18, 241-251.
- 7. Aldenberg T, Jaworska JS. 2000. Uncertainty of the hazardous concentration and fraction affected for normal species sensitivity distributions. Ecotoxicology and Environmental Safety 46, 1-18.
- 8. Wagner C, Løkke H. 1991. Estimation of ecotoxicological protection levels from NOEC toxicity data. Water Research 25, 1237-1242.
- 9. CSR. 1996. Derivong environmental quality objectives (INS and I-values). Bilthoven, the Netherlands. National Institute for Public Health and the Environment, Centre for Substances and Risk Assessment. Report nr. SOP CRS/H/003.
- Kalf DF, Mensink BJWG, Montforts MHMM. 1999. Protocol for the derivation of Harmonised Maximum Permissible Concentrations (MPCs). Bilthoven, the Netherlands. National Institute of Public Health and the Environment. Report 601506001.
- 11. Slooff W. 1992. RIVM Guidance Document. Ecotoxicological Effect Assessment: Deriving Maximum Tolerable Concentrations (MTC) fro single-species toxicity data. Bilthoven, the Netherlands. National Institute for Public Health and Environmental Protection. Report 719102018.
- 12. Traas TP. 2001. Guidance document on deriving environmental risk limits. Bilthoven, The Netherlands. National Institute for Public Health and the Environment. Report 601501012.
- 13. Van de Meent D, Aldenberg T, Canton JH, Van Gestel CAM, Slooff W. 1990. Streven naar waarden. Achtergrondstudie ten behoeve van de nota "Milieukwaliteitsnormering water en bodem". Bilthoven, Nederland. RIVM.
- 14. VROM. 1997. Integrale Normstelling Stoffen milieukwaliteitsnormen bodem, water, lucht. Notitie onder verantwoordelijkheid van de Interdepartementale Werkgroep

- Intergrale Normstelling Stoffen. Den Haag, Nederland. Ministerie van VROM, Directoraat-Generaal Milieubeheer.
- 15. VROM. 1999. Environmental risk limits in the Netherlands. A review of environmental quality standards and their policy framework in the Netherlands. The Hague, the Netherlands. Ministry of Housing, Spatial Planning and the Environment.
- 16. VROM. 2004. (Inter)nationale Normen Stoffen. Den Haag, the Netherlands. Ministry of Housing, Spatial Planning and the Environment (VROM). Report w015.
- 17. Van de Plassche EJ. 1994. Towards integrated environmental quality objectives for several compounds with a potential for secondary poisoning. Bilthoven, The Netherlands. National Institute of Public Health and the Environment. 679101012.
- 18. Romijn CAFM, Luttik R, Canton JH. 1994. Presentation of a general algorithm to include effect assessment on secondary poisoning in the derivation of Environmental Quality Criteria. 2. Terrestrial food chains. Ecotoxicol Environ Saf 27, 107-127.
- 19. Romijn CAFM, Luttik R, Meent Dvd, Slooff W, Canton JH. 1993. Presentation of a general algorithm to include effect assessment on secondary poisoning in the derivation of environmental quality criteria. Part 1. Aquatic Food Chains. Ecotoxicol Environ Saf 26, 61-85.
- 20. Smit CE, Van Wezel AP, Jager DT, Traas TP. 2000. Secondary poisoning of cadmium, copper and mercury: implications for the maximum permissible concentrations and negligible concentrations in water, sediment and soil. Bilthoven, The Netherlands. National Institute of Public Health and the Environment.
- 21. EC (JRC). 2003. Technical Guidance Document in support of Commission Directive 93/67/EEC on Risk Assessment for new notified substances, Commision Regulation (EC) No 1488/94 on Risk Assessment for existing substances and Directive 98/9/EC of the European Parliament and of the Council concerning the placing of biocidal products on the market. Part II. Ispra, Italy. European Chemicals Bureau, Institute for Health and Consumer Protection, Joint Research Centre. Report EUR 20418 EN/2.
- 22. EC (JRC). 2003. Technical Guidance Document in support of Commission Directive 93/67/EEC on Risk Assessment for new notified substances, Commision Regulation (EC) No 1488/94 on Risk Assessment for existing substances and Directive 98/9/EC of the European Parliament and of the Council concerning the placing of biocidal products on the market. Part III. Ispra, Italy. European Chemicals Bureau, Institute for Health and Consumer Protection, Joint Research Centre. Report EUR 20418 EN/3.
- 23. EC (JRC). 2003. Technical Guidance Document in support of Commission Directive 93/67/EEC on Risk Assessment for new notified substances, Commision Regulation (EC) No 1488/94 on Risk Assessment for existing substances and Directive 98/9/EC of the European Parliament and of the Council concerning the placing of biocidal products on the market. Part I. Ispra, Italy. European Chemicals Bureau, Institute for Health and Consumer Protection, Joint Research Centre. Report EUR 20418 EN/1.
- 24. Lepper P. 2002. Towards the derivation of quality standards for priorit substances in the context of the water framework

- directive. Fraunhofer-Institute Molecular Biology and Applied Biology.
- 25. Lepper P. 2005. Manual on the methodological framework to derive Environmental Quality Standards for priority substances in accordance with Article 16 of the Water Framework Directive (2000/60/EC). Schmallenberg, Germany. Fraunhofer-Institute Molecular Biology and Applied Biology.
- 26. ECHA. 2017. Guidance on the Biocidal Products Regulation Volume IV Environment Assessment and Evaluation (Parts B + C). Version 2.0. Helsinki, Finland. European Chemicals Agency. Report ECHA-17-G-23-EN, https://echa.europa.eu/documents/10162/17224/information_requirements-r7a-en.pdf/e4a2a18f-a2bd-4a04-ac6d-0ea425b2567f?t=1500286622893.
- EC. 2011. Common Implementation Strategy for the Water Framework Directive (2000/60/EC). Guidance Document No. 27. Technical Guidance For Deriving Environmental Quality Standards. Brussels, Belgium. European Commission. Report Technical Report - 2011 - 055.
- 28. EC. 2018. Technical Guidance For Deriving Environmental Quality Standards. Guidance Document No. 27. Updated version 2018. Brussels, Belgium. European Commission.
- 29. EFSA. 2009. Guidance of EFSA. Risk Assessment for Birds and Mammals. On request from EFSA, Question No EFSA-Q-2009-00223. First published on 17 December 2009. EFSA Journal 7(12), 1438.
- 30. EFSA. 2013. Scientific Opinion. Guidance on tiered risk assessment for plant protection products for aquatic organisms in edge-of-field surface waters. EFSA Journal 11(7), 3290.
- 31. Van Vlaardingen P, Traas TP, Wintersen AM, Aldenberg T. 2004. ETX 2.0. A program to calculate hazardous concentrations and fraction affected, based on normally distributed toxicity data. Bilthoven, The Netherlands. National Institute for Public Health and the Environment. Report 601501028/2004.
- 32. Campbell PJ, Arnold D.J.S., Brock TCM, Grandy NJ, Heger W, Heimbach F, Maund SJ, Streloke M. 1999. Guidance document on higher-tier aquatic risk assessment for pesticides (HARAP). Brussels, Belgium.
- 33. De Jong FMW, Brock TCM, Foekema EM, Leeuwangh P. 2008. Guidance for summarising and evaluating aquatic micro- and mesocosm studies. A guidance document of the Dutch Platform for the Assessment of Higher Tier Studies. Bilthoven, The Netherlands. National Institute for Public Health and the Environment. Report 601506009, https://www.rivm.nl/bibliotheek/rapporten/601506009.pdf.
- 34. Giddings JM, Brock TCM, Heger W, Heimbach F, Maund SJ, Norman SM, Ratte HT, Schäfers C, Streloke MS. 2002.
 Community-level Aquatic System Studies: Interpretation Criteria (CLASSIC) Proceedings from the CLASSIC workshop.
 Schmallenberg, Germany / Pensacola, USA. Fraunhofer Institute/SETAC.
- 35. OECD. 2006. Guidance document on Simulated Freshwater Lentic Field tests (outdor microcosms and mesocosms). Series on

- Testing and Assessment, No 53. OECD Environment Directorate, Paris.
- 36. Weyers A, Sokull Kluttgen B, Knacker T, Martin S, Van Gestel CAM. 2004. Use of terrestrial model ecosystem data in environmental risk assessment for industrial chemicals, biocides and plant protection products in the EU. Ecotoxicology 13(1-2), 163-176.
- 37. Verbruggen EMJ. 2012. Environmental risk limits for polycyclic aromatic hydrocarbons (PAHs). For direct aquatic, benthic, and terrestrial toxicity. Bilthoven, the Netherlands. National Institute for Public Health and the Environment. Report 607711007.
- 38. ECHA. 2012. Guidance on information requirements and chemical safety assessment. Chapter R.8: Characterisation of dose [concentration]-response for human health. Version 2.1. Helsinki, Finland. European Chemicals Agency. Report ECHA-2010-G-19-EN.
- 39. Verbruggen EMJ, Posthumus R, Van Wezel AP. 2001. Ecotoxicological serious risk concentrations for soil, sediment and (ground)water: updated proposals for first series of compounds. Bilthoven, the Netherlands. National Institute for Public Health and the Environment. Report 711701020.

List of abbreviations

AA-EQS annual average environmental quality standard

ACR acute-to-chronic ratio
ADI acceptable daily intake
AF assessment factor
EC effect concentration

EQS environmental quality standard

ERL environmental risk limit

HC5 hazardous concentration for 5% of the species
 HC50 hazardous concentration for 50% of the species
 IenM Dutch Ministry of Infrastructure and the Environment

INS Integrale/Internationale Normstelling Stoffen

LC lethal concentration

MAC-EQS maximum acceptable concentration EQS MPC maximum permissible concentration MTR maximaal toelaatbaar risiconiveau

NC negligible concentration

NOEC no observed effect concentration PNEC predicted no effect concentration

QCRA quantitative cancer risk assessment-method

QS quality standard

REACH Registration, Evaluation and Authorisation of Chemicals

RIVM Rijksinstituut voor Volksgezondheid en Milieu

SSD species sensitivity distribution SRC serious risk concentration TDI tolerable daily intake

TGD technical guidance document

VR verwaarloosbaar risiconiveau (=negligible concentration)

WFD Water Framework Directive